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In this paper, a Langevin equation is used for a chaotic system near the synchronization transition. By
mapping the motion of the driven system to a random walk, the universal23/2 power law is obtained. It is also
shown that the occurrence of on-off intermittency is a common feature of this transition. The numerical study
on chaotically driven Duffing oscillators provides clear evidence to support this theoretical investigation.
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I. INTRODUCTION

Recently, Pecora and Carroll have studied the situation in
which a state variable of a chaotic system~called a master
system! is used as an input to drive a subsystem that is a
replica of part of the master system@1#. They found that the
driven subsystem sometimes synchronizes to the master sys-
tem. The occurrence for this synchronization depends on the
largest Lyapunov exponent of the driven subsystem. A series
of interesting things, such as chaos-hyperchaos transition,
chaos-hyperchaos intermittency, etc., was reported by Kapi-
taniaket al. @2–4#.

On-off intermittency as a mechanism of bursting has been
studied recently@5–11#. It is named for the two-state nature
of a chaotic or stochastic motion in which the long period of
nearly constant state~laminar phase! is occasionally dis-
rupted by the short time large order burst~burst phase!. The
most essential character of this kind of intermittency is that
the probability distribution of the duration of laminar phases
is the23/2 power law function. In this paper, a Langevin
equation is used for a quite general dynamical system. The
occurrence of the on-off intermittency, or its particular case
of chaos-hyperchaos intermittency@2–4#, can be investigated
through the static solution of the Langevin equation. Map-
ping the motion of the system to a random walk, we can also
show that the23/2 power law is universal for the on-off
intermittency near the synchronization transition.

II. LANGEVIN EQUATION AND SYNCHRONIZATION
TRANSITION

Consider a chaotic system,dzW/dt5F(zW,m), wherezW is an
m-dimensional vector andm is a set of parameters. Divide
them state variables into two groups via

zW5F xW
yW
G , ~1!

wherexW is m1-dimensional andyW is (m2m1)-dimensional.
For simplicity we assume that there is only one parameter in

this system, andm stands for the unique parameter. The mas-
ter system~1! can be written as

dxW

dt
5G~xW ,yW ,m!,

dyW

dt
5H~xW ,yW ,m! ~2!

with

F~zW,m!5FG~xW ,yW ,m!

H~xW ,yW ,m!
G . ~3!

We refer toxW as the input or drive, while the driven system is

dyŴdt5H~xW ,yŴ ,m! ~4!

Here we callyŴ the subsystem response.
Assume that the subsystem is synchronized to the master

system whenm.mc and that the synchronization breaks
as m<mc . Consider an infinite small deviation ofyŴ from
yW , i.e.,

yŴ ~ t !5yW ~ t !1dyŴ ~ t !. ~5!

We get from Eq. (4) that

ddyŴ ~ t !

dt
5dyŴ•

]

]yW
H~xW ,yW ,m!1dyŴdyŴ :

]

]yW

]

]yW
H~xW ,yW ,m!1•••,

~6!

where„xW (t),yW (t)… is a chaotic orbit of the system(2).
It is clear that asm immediately belowmc all Lyapunov

exponents of the subsystem are negative except the largest
one. In this case for an ensemble of randomly chosen initial
values ofyŴ (0), thegrowth of time will drive all the initial
phase points to the unique unstable manifold. So for small
dyŴ (t) all the phase points of the response subsystems will lie

PHYSICAL REVIEW E AUGUST 1996VOLUME 54, NUMBER 2

541063-651X/96/54~2!/1361~5!/$10.00 1361 © 1996 The American Physical Society



on a simple curve after long transient time. Denoting asw
the deviation from the state of the master system along this
curve, we have

dw

dt
5wG1~ t !1w2G2~ t !1w3G3~ t !1•••, ~7!

where G1(t)5G1(xW ,yW ,m), G2(t)5G2(xW ,yW ,m), G3(t)
5G3(xW ,yW ,m), and so on. In case of small deviationw, the
first termwG1(t) on the right side of Eq.~6! dominates the
motion. As m'mc the coefficientG1(t) changes its sign
quite frequently. In the case ofm<mc , w may not be always
confined to very small values. To keepw converged some
terms of higher order must be considered on the right side of
Eq. ~6!. Assuming, without loss of generality, that
G3(t),0 and it does not change its sign, though it is not a
constant, we could cut off the series on the right side of Eq.
~6! from the termo(w4). Otherwise, we should search for
another higher even order term satisfyingG2n11(t),0.
Moreover, the fluctuation of the nonlinear terms is irrelevant
to our discussion. So we letG2(t)5c andG3(t)52d where
c is a constant andd is a positive constant. An important
feature of a chaotic system is that any small difference in
initial values will be exponentially enlarged in motion. A
correlation time scalet0 can be roughly defined as 1/l,
wherel is the largest Lyapunov exponent of the master sys-
tem. This implies that the coefficientG1(t) will lose memory
of its initial state for a long enough period of time. With a
long sampling interval T@t0 the chaotic signals
Gn[G1(nT) will behave as a random noise series. The dif-
ference between the chaotic and random series for on-off
intermittency is still being researched. However, for on-off
intermittency, attention is focused on the asymptotical be-
havior of the probability distribution of the laminar phase
size, mainly for that of large size. Hence, the chaotic series
G1(t) in Eq. (6) could approximately be replaced by a ran-
dom white noise below. The feasibility of this approximation
can only be tested by the numerical calculation. Letting

G1~ t !5a1bg~ t !, ~8!

where a,b are two constants and̂g(t)&50,̂ g(t)g(t8)&
5d(t2t8), we have

dw

dt
5aw1cw22dw31bwg~ t !. ~9!

The corresponding Fokker-Planck equation is

]r~w,t !

]t
52

]

]w
@C~w!r~w,t !#1

]

]w2 @D~w!r~w,t !#

~10!

with

C~w!5~a1b2/2!w1cw22dw3, ~11!

D~w!5b2w2/2. ~12!

The static solution is@12#

r~w!5H d~w! if a<0,

N exp@F~w!# otherwise,
~13!

whereN is a constant and

F~w!5S 12
2a

b2 D lnw1
2cw

b2
2
dw2

b2
. ~14!

It shows that fora,0, the deviationw will constantly be
zero. This implies that the two systems lie on the synchro-
nized state. Fora.0, the peak of the distribution is still at
w50 as long asa,b2/2, but the nonzero value ofw already
has some probability to occur. This corresponds to the case
of on-off intermittency in that the deviation lies at nearly
zero value for a long period of time, which is interrupted by
the short time burst of nonzero value. With increasinga in
value, the largest subsystem Lyapunov exponent will in-
crease in value, and the time during which the system lies

FIG. 1. A snapshot for phase points of response subsystem with
only one positive subsystem Lyapunov exponent. The parameters
area50.1, A510.0,v51.0, andb50.120.

FIG. 2. The largest Lyapunov exponent of response subsystem
with a50.1,A510.0,v51.0, andb50.10–0.15.
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at laminar phase becomes shorter and shorter, corresponding
to the decreasing of the probabilityr(w) at w50.

III. ‘‘GAMBLER RUIN’’ PROBLEM AND LAMINAR
PHASE DISTRIBUTION

In order to get the distribution of laminar phases, we may
map Eq.~9! to a random walk@13#. For on-off intermittency,
the main attention was focused on the laminar phase distri-
bution. And during the laminar phase the value ofw is so
small that the nonlinear terms in Eq.~9! can be ignored:

dw

dt
5aw1bwg~ t !. ~15!

Defining t050,tn5nDt,wn5w(tn), for the given value of
wn , we can get the distribution ofwn11 @14#:

wn115wn1A2DDtbg~ t ! ~16!

and

^Dwn&5^wn11&2wn5awnDt, ~17!

s25^Dwn
2&2^Dwn&

25b2wn
2Dt, ~18!

where^ & means ensemble average,s is the stand deviation
of serieswn , and 2D51.0 for simplicity.

On the other hand, for a random walk along thew axis,
each step is of lengthl . The probability that the walker takes
a step at the positive direction isp while at the negative
direction it is q512p. For the given positionwn of the
walker, we have the next positionwn11, which satisfies

^Dwn&5 l ~p2q! ~19!

and

s254l 2pq. ~20!

Through the correspondence of the motion of Eq.~15! and
the random walk, we have

l ~p2q!

A4l 2pq
5

^Dwn&
s

5
a

b
ADt[B. ~21!

Since p1q51, we can getp51/2(12B) and q51/2(1
1B) for smallB.

In terms of a random walk, the laminar phase of sizes can
be defined by

w1<t,w2<t, . . . ,ws<t,ws11.t

for a suitably shifted time origin, wheret is the threshold of
the laminar phase. In order to make sure that we are not
beginning at the inner part of another laminar phase, a back-
ward conditionw0.t is also needed. So the probability dis-
tribution of laminar phases is:

P~s!5prob$w0.tuw1<t,w2<t, . . . ,ws<t,ws11.t%.
~22!

The probability

ls5prob$w1<t,w2<t, . . . ,ws<t,ws11.t% ~23!

is in fact the special case of the ‘‘Gambler ruin’’ problem
@15,16#. A gambler plays a series of independent games
against a bank with infinite resources. Once he is ruined, the
game will be terminated. In each game, the gambler either
loses or wins one dollar, and the probability that the bank
wins is q5(12B)/2, while the probability that the gambler
wins is p5(11B)/2. Denoting the net dollars that the bank
had won after thenth game aswn , the ruined serieswn of
the gambler is typically

w1 ,w2 , . . . ,ws , . . . .

FIG. 3. The deviation of subsystem and master system
f s[A(x22x3)

21(dx2 /dt2dx3 /dt)
2 vs timet. The unit oft is the

integral stepDt. Hereb50.120; other parameters are the same as
in Fig. 1.

FIG. 4. The transient to a power function of the probability
distributionP(n) of laminar phase sizen, wheren is the number of
integral steps throughout the laminar phase. The sampling interval
T is of the different values 5Dt, 7Dt, 10Dt, 15Dt, 20Dt, 30Dt, or
50Dt, respectively. Here,Dt is the integral step of timet. The
values of the parameters are the same as in Fig. 1.
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For the reason that once he is ruined the game will be termi-
nated, if the gambler starts out with a finite capital ofz
dollars, the series will be typically

w1<z,w2<z, . . . ,ws<z,ws11.z.

This is the same series of a laminar phase of sizes if the
threshold t5z. From these above, we can say that the
‘‘Gambler ruined’’ problem and laminar phase distribution
are just two sides of one coin.

The probability that the gambler is ruined after precisely
s games is

p~z,s!5
z

sS s

s2z

2
D p~s2z!/2q~s1z!/2. ~24!

So the probabilityls is

p~z51,s!5
s2 3/2

A2p
A11B

12B
~12B2!s/2. ~25!

The probability forw0.t is simplyq/25(12B)/4, and then
we have the probability distribution of the duration of lami-
nar phases:

P~s!5
12B

4
p~z51,s!5

s2 3/2

A2p
e2B2s/2. ~26!

It can be seen that fora50, i.e.,B50, corresponding to the
critical state where the largest subsystem Lyapunov exponent
becomes zero, we have

P~s!}s2 3/2, ~27!

the pure power law of exponent23/2, while for a.0 we
have

P~s!}s2 3/2exp~2s/s* ! ~28!

with

s*5
2

B2 5
2b2

a2Dt
. ~29!

This shows that for a positive value of the largest subsystem
Lyapunov exponent, the distribution of laminar phases has
an exponent decay at large size laminar phases.

IV. NUMERICAL EXPERIMENT ON DUFFING
OSCILLATORS

At below, we will give an example studied by numerical
calculation. It is based on the fourth-order Runge-Kutta
method with integral stepDt50.01.

The system we studied is two chaotically driven Duffing
oscillators:

d2x1
dt2

1a
dx1
dt

1x1
35A cosvt, ~30!

d2x2
dt2

1b
dx2
dt

1x2
35x1 , ~31!

d2x3
dt2

1b
dx3
dt

1x3
35x1 , ~32!

where Eq.~30! and Eq.~31! are the master system while the
response subsystem is Eq.~32! and, in principle, there may
be many response subsystems. And in this casex1, dx1 /dt,
and t stand forxW , x2 and dx2 /dt stands foryW in Eq. ~2!,
while x3 and dx3 /dt stand foryŴ . Here only some compo-
nents ofxW appear in the response subsystem while the others
are irrelevant. The value of the parameters are
a50.1,A510.0, andv51.0 ~the famous Japanese attractor
@17#!. A snapshot of phase points of 25 response subsystems
with b50.120 is shown in Fig. 1. It can be seen that the
deviation is indeed along a simple curve although the orien-
tation of the curve changes with time. With the decreasing of
b from 0.05 to 0.15, the two oscillatorsx2 and x3 can go
from synchronization to nonsynchronization. This can be
seen from the largest subsystem Lyapunov exponent~see
Fig. 2!. Forb50.120, just above the zero point of the largest
subsystem Lyapunov exponent, the deviationf s
[A(x22x3)

21(dx2 /dt2dx3 /dt)
2 is shown in Fig. 3. It is

truly of the on-off nature. The probability distribution of
laminar phases was also calculated~see Fig. 4!. The sam-
pling time interval T is taken to be 5Dt, 7Dt, 10Dt,
15Dt, 20Dt, 30Dt, or 50Dt, respectively. AsT increases
in value, the transient of the distribution to a good power law
relation is obvious. The power law fitting of the distribution
is just of exponent23/2 ~see Fig. 5!.

FIG. 5. The distribution of laminar phase size. The symbols
P(n) andn are of the same meaning as Fig. 4. The sampling inter-
val T is 10Dt. The dashed line of slope23/2 is plotted to guide the
eyes. A coarse grain technique is used to get this result that the
occurrence probability of length from 100nDt to 100(n11)Dt is
summed up and regarded as probability of length 100(n11/2)Dt.
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V. CONCLUSION

In this paper, we derived a Langevin equation from a
quite general system, and showed that the occurrence of the
on-off intermittency or its particular case of chaos-
hyperchaos intermittency is a common feature at the sy-
chronization transition. By mapping the motion of the driven
system to a random walk, the probability distribution of
laminar phase distribution is obtained. The numerical calcu-

lation of chaotic driving Duffing oscillators shows clear evi-
dence to support this theoretical conclusion.
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